BİR STİRLİNG MOTORUNA GÜNEŞ ENERJİSİ UYGULANMASI Fatih AKSOY DOKTORA TEZİ MAKİNE EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PDF Ücretsiz indirin

Ġekil 3.14 de rhombic hareket mekanizmalı beta tipi bir Stirling motorunun Ģematik resmi görülmektedir. Rhombic hareket mekanizması, güç ve yer değiģtirme pistonu bağlantı parçaları ve rodları ile birbirine ters yönde hareket eden iki diģliden oluģmaktadır. Böylece piston ve silindir gibi parçalarda aģıntı minimuma indirilmektedir [80, 83, 88]. 62 42 yer değiģtirme pistonunun eteği ġekil 3.9.b’de görülen 2 noktasına gelmektedir [84, 104]. Yer değiģtirme pistonu muylusu B noktasından C noktasına giderken yer değiģtirme pistonu ÜÖN civarında sabit kalacak, güç pistonu AÖN dan ÜÖN ya doğru hareket edecektir. Bu hareket esnasında çalıģma maddesinin hemen hemen tamamı yer değiģtirme pistonu ile güç pistonunun arasındaki soğuk hacimde sıkıģtırma iģlemine tabi tutulacaktır. ĠĢlem esnasında çalıģma maddesinden soğuk cidarlara ısı akıģı olduğu için bu iģlemin sabit sıcaklıkta gerçekleģtiği kabul edilmektedir. Bu iģlemin sonucunda yer değiģtirme pistonunun eteği ve güç pistonunun tepesi 3 noktasında bulunmaktadır. Yer değiģtirme pistonunun eteği ile güç pistonunun tepesi arasındaki mesafe yer değiģtirme pistonu kursunun yarısından fazladır [84, 104]. Yer değiģtirme pistonu muylusu C noktasından D’ye giderken güç pistonu ÜÖN civarında sabit kalacak, yer değiģtirme pistonu ÜÖN’dan AÖN’ya doğru kendi kursunun yarısından fazla hareket edecektir. Bu hareket esnasında çalıģma maddesinin iģgal ettiği toplam hacim sabit kalmaktadır. Bu iģlem esnasında soğuk hacimde bulunan çalıģma maddesi sıcak hacme geçecektir.

BirleĢik güç sistemlerinin enerji çıkıģının mevcut sisteminin güç seviyesinin maksimum %65 i kadar olduğunu belirlemiģlerdir [24]. Cucumo ve arkadaģları (2005), Calabria Üniversitesinde yer alan 3 kw kapasiteli bir fotovoltaik sistemin performansını incelemiģlerdir. Sistemin verimi, deney parametrelerine bağlı olarak %2,9-%9,2 arasında değiģim göstermiģtir [25]. Li ve arkadaģları (2005), Hong Kong ġehir ÜniverPinUp güncel giriş nde kurulan küçük ölçekli bir fotovoltaik sistemin verim ve performans karakteristiklerini incelemiģlerdir. GüneĢ ve fotovoltaik sistem tarafından üretilen güç verileri sistematik olarak kayıt edilmiģtir. Kasım, Aralık, Ocak ve ġubat aylarında sistemin ortalama günlük verimleri sırası ile %9,7; %8,7; 9,6 ve %9,4 olarak elde etmiģtir [26].

  • Sistemin verimi, deney parametrelerine bağlı olarak %2,9-%9,2 arasında değiģim göstermiģtir [25].
  • Ġçten yanmalı motorlarda ve kompresörlerde kullanabilen bu mekanizmanın en büyük avantajı maliyetinin oldukça düģük olmasıdır [84, 111, 114].
  • John Ericsson 373 W gücünde küçük bir motora hareket vermek için 3,25 m 2 lik bir parabolik kollektör tasarlamıģ ve imal etmiģtir.
  • Türbinde kalan buhar bir kondenserde yoğunlaģtırılmakta ve buhar üretmek için ısı eģanjörüne geri gönderilmektedir.

Alıcı 90,8 m çelik kule üzerine yerleģtirilmiģ ve ısı transfer akıģkanı olarak su buharı kullanılmıģtır. Enerji 19,8 m çapında ve 13,7 m yüksekliğinde içerisinde ısı transfer yağı bulunan bir tankta depolanmaktadır. Depo edilen sıcak yağdan klasik bir buhar türbini kullanılarak 274 C sıcaklık ve 2,7 MPa basınçta buhar üretilmektedir [12] yılında Ġspanya da CESA-1 isimli güneģ enerji kule sistemi çalıģmaya baģlamıģtır. Sistem, her biri 38 m 2 kollektör yüzey alanına sahip 300 heliostat ve 60 m yüksekliğinde beton bir kule üzerine yerleģtirilen kaviti alıcıdan oluģmaktadır. Her biri 40 m 2 kollektör yüzey alanına sahip 3000 heliostat güneģ ıģınlarını 200 m yüksekliğinde bir kulenin üzerine yerleģtirilen iki alıcıya yansıtmaktadır. 800 C ye ısıtılan hava ısı transfer akıģkanı olarak kullanılmıģtır. Sistemde bir buhar türbini ve iki açık çevrim ile çalıģan gaz türbini yer almaktadır [12]. Kribus, manyeto hidrodinamik çevrim, Brayton gaz türbini çevrimi ve Rankin buhar çevriminden oluģan üç kademeli çevrimin performansını birleģik çevrim ile karģılaģtırmıģtır. Üç kademeli çevrimin maksimum dönüģüm veriminin birleģik çevrimin veriminden daha yüksek olduğunu belirlemiģtir [51]. 28 8 Kim ve arkadaģları (2009) Kiemyung ÜniverPinUpbet güncel adres!5@PinUpbethttps://PinUpcasino-tr.com/;PinUpbet ne kurulan Osan ve Dongho isimli iki fotovoltaik sistemin performans karakteristiklerini incelemiģlerdir.

Belirli bir çalıģma aralığının ardından motora ilk hareket bir marģ motoru aracılığı ile verilmektedir [83,84]. Güç pistonu krank miline simetrik iki parçalı biyeller vasıtası ile bağlanmıģtır. Biyel kolları Böhler K100 soğuk iģ takım çeliğinden imal edilmiģtir. Yer değiģtirme pistonu kuyruğu manivela koluna deveboynu Ģeklinde bir biyel kolu kullanılarak bağlanmıģtır. Piston biyellerinin ağırlığını azaltmak için kesiti I Ģeklinde iģlenmiģtir. Piston biyellerinin krank kol muylusuna bağlanan yatakları kepli yapılmıģtır [111]. Resim Yer değiģtirme ve güç pistonu biyelleri [111] Yer değiģtirme pistonu kuyruğu Resim 7.12 de yer değiģtirme pistonu kuyruğu görülmektedir. Yer değiģtirme pistonu kuyruğu yer değiģtirme pistonu ve biyeli arasında yer almaktadır. Yer değiģtirme pistonu kuyruğu 2080 yağ çeliğinden imal edilmiģ ve ağırlığını azaltmak amacı ile milin içi boģaltılmıģtır.

Buna ilaveten, ısı transfer alanının ve soğuk-sıcak kaynak arasındaki sıcaklık farkının artması aynı sonucu ortaya çıkarmaktadır. 95 Rhombic hareket mekanizmalı Stirling motorunun kinematik iliģkileri Manivela hareket mekanizmalı beta tipi bir Stirling motoru ile karģılaģtırma yapmak amacı ile Rhombic hareket mekanizması kullanılmıģtır. Ġekil 4.4 de Rhombic hareket mekanizmalı Stirling motorunun kinematik iliģkileri görülmektedir. Rhombic biyel muylusu ile krank ekseni arasındaki mesafe, (4.14) olarak ifade edilir. BeĢ bölgeli model üzerinden Stirling motorunun izotermal analizi [111] Martini tarafından yapılan Ġzotermal analizde aģağıdaki kabuller yapılmıģtır. SıkıĢtırma ve geniģleme bölgesinde hacim değiģimi esnasında çalıģma maddesinin sıcaklığı üniformdur. AkıĢkanın rejeneratörden geçiģi esnasında oluģan viskoz kayıplar göz ardı edilir ve rejeneratörün sıcaklığı zamanla değiģmez. SıkıĢtırma bölgesinde T c ve geniģleme bölgesinde T h sıcaklıkları mevcut olup rejeneratördeki sıcaklık değiģimi lineer kabul edilir. AkıĢ sürtünmesizdir, geçiģ sırasında akıģkanın serbest ivmelenmesine yol açan basınç değiģimi yoktur. SıkıĢtırma ve geniģleme hacimleri krank açısının fonksiyonu olarak açıklanabilir. Bu yüzden nükleer enerji aynı zamanda bir bağımlılık olarak kabul edilebilir [2] li yıllarda yaģanan petrol krizi, geliģmiģ ülkeleri yenilenebilir enerji kaynaklarına yöneltmiģtir. Yenilenebilir enerji teknolojisi sürekli ve temiz enerjiye ulaģmayı sağlamaktadır.

Sisteme ısı sürülmesi sürekli olduğundan, emme ve egzoz supapları bulunmadığından ve basınç değiģimleri sinüzoidal olduğundan, gürültüsüz ve titreģimsiz çalıģır. AteĢleme ve enjeksiyon sistemleri ile supap gibi yardımcı parçalara ihtiyaç duyulmadığından az bakım gerektirir. Yağlama yağı soğutucu etkide bulunmadığından içten yanmalı motorlarda olduğu gibi ısı kaybı olmaz. Ayrıca yağ sarfiyatı daha az ve yağ değiģim aralığı daha uzundur. Yanmanın kontrollü ve dıģardan olması sebebi ile azotoksit, karbonmonoksit ve yanmamıģ hidrokarbon miktarı içten yanmalı motorlara göre daha azdır. Stirling motorları çok değiģik mekanik düzenlemelerle, çok küçük ve çok büyük boyutlarda ve değiģik güçlerde üretilebilir [78, 82, 83, 88]. 74 54 ġekil Stirling ve buji ateģlemeli motorların tork değiģimleri [83] Isıtıcı ve soğutucu sıcaklıkları ġekil 3.22 de ısıtıcı ve soğutucu sıcaklıklarının fonksiyonu olarak çıkıģ gücü performans değerleri görülmektedir. Ġekilde görüldüğü gibi, ısıtıcı sıcaklığının artması ve soğutucu akıģkan giriģ sıcaklığının azalması motor gücü ve verimini artırmaktadır [83]. Stirling motorlarında gürültü seviyesinin artıģına soğutma için ilave edilen parçalar sebep olabilir.

70 Sallanan sürücü tip hareket mekanizması Sallanan sürücülü tip hareket mekanizma kullanılan bir motor ġekil 3.16 da görülmektedir. Bu tasarımda, yan yana yerleģtirilmiģ iki adet piston bir külbütör mekanizması vasıtası ile birbirine bağlanmıģtır. Ġçten yanmalı motorlarda ve kompresörlerde kullanabilen bu mekanizmanın en büyük avantajı maliyetinin oldukça düģük olmasıdır [84, 111, 114]. Ġekil Sallanan sürücü mekanizmalı Stirling motoru [84] Krank-biyel hareket mekanizması ġekil 3.17 de krank-biyel hareket mekanizmalı bir Stirling motoru görülmektedir. Krank-biyel mekanizmalı Stirling motorlarının imalatı basit olduğu için küçük motorlarda yaygın olarak kullanılmaktadır. Bu mekanizmada krank mili haznesi (karter) içerisindeki basınç minimum olmalıdır [80].

GüneĢ pillerinin yüzey alanları 100 cm 2 civarında, kalınlıkları ise 0,2-0,4 mm arasındadır. Fotovoltaik pillerin yüzeylerine ıģık düģtüğünde elektrik gerilimi oluģtururlar [15]. Parabolik oluklu kollektör, güneģ enerji kuleleri ve parabolik ayna-ısı makinesi sistemlerinin verimleri sırası ile %21, %23 ve %29 dir [17]. Fotovoltaik hücrelerin güneģ enerjisini elektrik enerjisine dönüģüm verimi %5-20 arasında değiģmektedir [18]. Bu sistemler arasında parabolik ayna/ısı-motoru sistemi ön plana çıkmaktadır. Bu çalıģmada, beta tipi bir Stirling motoruna güneģ enerjisi uygulayarak motor performansının belirlenmesi amaçlanmıģtır. Stirling motorunun performansı nodal analiz metodu kullanarak farklı ısı taģınım katsayıları için belirlenmiģtir. GüneĢ enerjisini belirli bir bölgeye odaklamak amacı ile fresnel mercek kullanılmıģtır. Bu enerjiyi Stirling motorunun sıcak hacminde bulunan çalıģma maddesine aktarmak amacı ile kaviti tasarlanmıģtır. Kavitide oluģan iletimle ısı transferi 600 W/m 2 ısı akısı için belirlenmiģtir. Kaviti alüminyum, bakır ve paslanmaz çelik olmak üzere üç farklı malzemeden imal edilmiģtir.

400 ºC sıcaklık, 90º eğim ve 8 alan oranında, konveksiyon ve radyasyon kayıpları toplam ısı kayıplarının sırası ile %40,72 ve %59,28 i olarak elde edilmiģtir [137]. Kanalın giriģindeki sıcaklık dağılımı düzgün iken çıkıģta dalgalı fonksiyona dönüģmektedir. Isı taģınım katsayısının veya ısı transferi yüzeyinin büyük olduğu hallerde bu dalgalanmanın az olduğu, küçük olduğu hallerde ise dalga genliğinin arttığı görülmüģtür. Bu olay çalıģma maddesinin değiģimini hesaplamada kullanılan birinci kanunun matematiksel olarak karakteristiğinin değiģken olmasından kaynaklanmaktadır. AkıĢkan ilerlerken duvar sıcaklığı ile akıģkan arasındaki sıcaklık farkı artmakta belirli bir farktan sonra sıcaklık değiģimini hesaplamada kullanılan eģitlik dalga denklemine dönüģmektedir. Ġekil Isıtma ve soğutma kanalında sıcaklık değiģimi ġekil 4.12 de 200, 300 ve 400 W/m 2 K lik ısı taģınım katsayıları için çalıģma maddesi kütlesine bağlı olarak çevrimlik iģin değiģimi görülmektedir. ÇalıĢma maddesi kütlesinin artması ile çevrimlik iģ belirli bir değere kadar artmakta ve daha sonra azalmaktadır. ÇalıĢma maddesi kütlesinin aģırı artması, çalıģma maddesinin ısıtılması ve soğutulması için transfer edilen ısının istenilen sıcaklık değiģimini oluģturamamasına neden olmaktadır. Ġekilde görüldüğü gibi, ısı taģınım katsayısının artması ile maksimum iģi veren kütlede artmaktadır.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *